Pomůcky: čidlo barometr, LabQuest mini, kádinka s vodou, pravítko s hadičkou, stativový materiál

Postup práce: Propojte čidlo barometr s LabQuest mini (LQm), použijte analogový vstup CH 1. Pomocí USB kabelu propojte LQm s notebookem. Spusťte program Logger Pro 3.15. Zkontrolujte, zda na LQm svítí kontrolní LED zeleně (pokud ne, zkontrolujte propojení kabelů, restartujte Logger).

<u>Úkol 1</u>: Ověření závislosti velikosti hydrostatického tlaku $p_{\rm h}$ na hloubce h

1. Pomocí tlačítka 🛛

Sběr dat nastavte nejprve položku mód na *události se vstupy*, viz obr. 1.

er dat			
Mód: události se	vstupy N	Počet veli	čin: 1 ∨
Značka:	hioubka	✓ Jednotky: cm	
Název veličiny:			-
Značka:		Jednotky:	-
Název veličiny:			-
Značka:		Jednotky:	-
🗌 Použít 10 s prů	něr (způsobí přísluš	nou prodlevu)	
Nápověda		Hotovo	Zrušit

Obr. 1 Nastavení měřícího módu na Události se vstupy.

- 2. Zadejte název veličiny "hloubka", značku "h" a jednotky "cm" a potvrďte tlačítkem *Hotovo*.
- 3. Připojte k čidlu barometru hadičku s pravítkem.
- 4. Vynulujte čidlo pomocí *Nulovacího tlačítka* nebo přes *Experiment* \rightarrow *Nulovat*.
- 5. Konec pravítka držte ve vzduchu nad hladinou vody v kádince, viz obr. 2.

Obr. 2 Změření první hodnoty

Klikněte na tlačítko **Zachovat** a do dialogového okna zapište číslici 0, potvrďte **OK**, viz obr. 3. Po nastavení výchozího bodu měrení se barevný bod přesune do polohy [0;0].

6. Ponořte pravítko s hadičkou 2 cm do kapaliny, viz obr. 4. Klikněte na Zachovat, zapište 2.

Obr. 4. Uspořádání experimentu pro rovnoměrný přímočarý pohyb.

7. Postup opakujte po 2 cm pro další hodnoty hloubky, až získáte křivku jako na obr. 5.

8. Po zadání poslední hodnoty ukončete měření tlačítkem *Zastavit*. Proveďte interpolaci grafu lineární funkcí pomocí tlačítka zkopírujte do protokolu.
Graf s interpolací pomocí nástroje Windows *Výstřižky* Určete hodnotu směrnice přímky, viz obr. 6, a zapište ji do protokolu.

×1
Lineární proložení pro: Poslední měření Tlak
Tlak = mh+b
m (směrnice): 0,09251 kPa/cm
b (průsečík s Y)∶0,007711 kPa
Korelace:0,9999
RMSE: 0,005331 kPa

Obr. 6 Detail lineární interpolace

- 9. Z hodnoty směrnice vypočítejte hustotu kapaliny a zapište ji do protokolu. Při výpočtu uvažujte $g = 9.81 \ m \cdot s^{-2}$.
- 10. Z tabulky naměřených hodnot, viz obr. 5 vlevo, vypočítejte pro každý řádek hodnotu hustoty ($g = 9.81 \ m \cdot s^{-2}$) a určete průměrnou hustotu.
- 11. Na <u>www.vernier.cz</u> zjistěte, s jakou nejistotou měří barometr, určete nejistotu měření hloubky pravítkem a vypočítejte relativní chybu hustoty podle vztahu $\delta \rho = \delta p + \delta h$. Z relativní nejistoty vypočítejte směrodatnou odchylku podle vztahu $\Delta \rho = \delta \rho \cdot \bar{\rho}$.
- 12. Do závěru okomentujte průběh zjištěné funkční závislosti hydrostatického tlaku na hloubce *h* (typ funkce) a vypočítanou průměrnou hodnotu hustoty kapaliny včetně její směrodatné odchylky $\rho = (\bar{\rho} \pm \Delta \rho) kg \cdot m^{-3}$ v porovnání s tabulkovou hodnotou ρ_{tab} .