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Abstract. We present a new set of the fundamental constants of the nature which are obtained 
from other fundamental constants such as {h, c, G, α} and from the new low called 
Generalized Planck Scales. These new constants are in a remarkable accordance with the 
characteristics of our observable universe (mass, horizon radius, age of the universe, matter 
density). Possible cosmological consequences like the value of Hubble constant, age of the 
universe or the ratio between matter density and Λ- density are discussed. 

 
 
1. Introduction 
 
    In the 1870’s G.J. Stoney, the Irish physicist and the first who measured the value of 
elementary charge e and introduced into physics the term “electron”, constructed from e, c, G 
universal units with dimensions of length, time and mass: lS = e (G)1/2/c2, tS = e (G)1/2/c3,      
mS = e / (G)1/2. The expression for mS has been derived by equating the Coulomb and Newton 
forces, [3]. 
    When M. Planck discovered in 1899 h, he introduced as universal units of Nature for basic 
entities of space, time and matter length lP = h / mPc, time tP = h / mPc2 and mass mP = 
(hc/G)1/2.     
    Two century afterwards, Planck Scale Phenomena invites physicist of the whole world. The 
crucial question is: is there any physical significance to these natural units? Quantum gravity 
research largely takes for granted a positive answer to this question: Planck units present the 
physical scale of features relevant to a theory of quantum gravity and appropriate processes, 
[7]. 

In the following we show, that Planck scales as well as Stoney units are only  one of many 
potential cases of generalized Planck Scales. Possible cosmological consequences, such as the 
age of the universe, Λ- density or the ratio between ΩΛ and ΩM are discussed. 
 
2. Generalized Planck Scales  – GPS  

 
    We accepted an other approach to the derivation of dimensional constants such as mass, 
length and time than [1]-[8]. Firstly, we extend a number of fundamental constants from {h, c, 
G} to {h, c, G, e, µ0} because we believe that the electrodynamics (characterized by the value 
of elementary charge e and by magnetic constant µ0) has to be involved in our considerations 
as well as the quantum of action h, c as the basis of relativity theory and the Newton 
gravitational coupling constant G as ever-present gravity. The values of the constants have 
been adopted from []. We show that such units of length, time and mass as Planck’s, Stoney’s 
, Schrodinger’s or Dirac’s are only special cases of the generalized ones. 

     If we take into account that a set of the fundamental constants {h, c, G, e, µ0} have 
dimensions (in SI units): 

 
       [h] = kg⋅m2⋅s-1, 
       [c] =       m⋅s-1, 
       [G] = kg-1⋅m3⋅s-2, 
       [e] =           s⋅A,  
       [µ0] = kg⋅m⋅s-2⋅A-2,  
 



 we can linearize power of  these dimensions and write a linear system of equations in the 
matrix form as follows: 
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 or simply 
 

EAC =⋅ , 
 
 where C is matrix created from power of dimensions of the fundamental constants (first 

column is h, second c, third G, etc.),  A is matrix composed by some real coefficients {a1, a2, 
a3, a4, a5 } and E is identity matrix. 

     Solving these equations (1), we can find for mass M (first column of  E4), length L (second 
column of  E4), time T (third column of  E4) and current I (fourth column of  E4) following 
parametric solutions:   
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 which means that we have a general parametric solution for a set of real parameters { a1, a2, 

a3, a4, a5} in a form  
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 and thus in general for mass-scale we get (for simplicity we replace a5 by κ) 
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 Accordingly for length L we have: 
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 for time T: 
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 and finally for current I: 
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 We still modify equations (1) – (5) to get the best form as follows:  
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 or in a logarithmic form 
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 where mP, lP, tP, IP are Planck mass, Planck length, Planck time and Planck current, α is the 

fine structure constant and κ is so-called the quantum coefficient (this name is has been 
chosen for reasons that this coefficient can play an important role in a quark-lepton model).  

     For our next consideration we will continue only with relationships for m(κ), l(κ) and t(κ). 
 We can see that for κ = 0 we get standard Planck scales with no reduction of the value of h, 
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 and for κ = ½ Stoney scales (these are independent of h) 
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     Because other units (such as Schrodinger, Hartree-Bohr, Dirac or QED-Stille units) can be 
obtained from Planck and Stoney units with the certain substitution [1], we can denominate 
scales described by Equ. (6) – (9) as the main scales and others as the derived ones. 

     Note, that Stoney mass, length and time in equations (15) differs from units defined by 
Stoney [1], [3] by the constant (1/4π)1/2 because of  the fact, that the expression for mS in 
Stoney article has been derived by equating the Coulomb and Newton forces. This 
discrepancy can be corrected by using h  instead of h, which leads to the analogous result as 
follows: 
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3. Physical Meaning of GPS  
 
    As we can see from the equations (6) – (8) or (16) – (18), these formulae can be interpreted 
as a power low for arbitrary mass, length and time (from elementary particles to the whole 
universe) which is only created from the fundamental constants of nature such as {h, c, G, e, 
µ0, α} and some real number κ called the quantum coefficient.  
    The relatively close range for a value of κ can be estimated as an interval < –33; 33 > 
where (–33) corresponds to the whole universe (mass as well as length or time) and right side 
of an interval, (33) is a lower limit for masses of the elementary particles, for example.   
    The value of the quantum coefficient κ is illustrated on the Fig.1. 
 
 



 
FIG.1: Quantum coefficient κ in relation to rough masses of the objects 
 
    We behold that the main significance of GPS is in a coupling between the world of the 
elementary particles and macroscopic objects including our universe through a very close 
interval for the quantum coefficient. 
 
 
4. New Universal Constants of the Nature and Cosmological Consequences 
 
    What are fundamental constants of the nature? We have a set of the physical constants such 
as {h, c, G} or {h, c, G, e, µ0}. However, there are other fundamental constants as  
π = 3.1415926, e = 2.71828 or ϕ = 1.6180339 (Golden Section) which are fundamental 
mathematical ones. These constants are present in many laws of physics or in a nature itself 
[9]. 
    Now we define set of the new universal constants, which are related to GPS and the size of 
these can have possible cosmological implications. 
Earliest we consider new scales for κ = – ½ : 
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In the following we set new universal constants as: 
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where α is the fine structure constant and mK, lK, tK, ρK are specified above. Here and 
hereinafter by reason of the possible mistake of e = 2.71828 and e (elementary charge) we 
will use the expression for mathematical constant ex as exp [x]. 
    The values of these constants, MK, LK, TK, PK, are in remarkable accordance with the 
characteristics of our observable universe. Now we dissect these values concerning articles 
[10], [11], [14], [15] and present-day observations, such as the current value of the 
cosmological constant, Hubble parameter or critical density.  
 
A. Hubble Constant and Age of the Universe 
 
   Primarily we focus on the constant TK. Consider “Sandage Consistency Test” [12] where 
H0t0 = 0.94 ± 0.14 ≈ 1 (H0t0 = 2/3 is inconsistent with current data). If we take a value of TK 
from Equ.(25) as the age of the Universe, we get  
 

11
0 47.84/1 −− ⋅⋅== MpcskmTH K .  (27) 

 
    Note, that this value is not obtained by observations, but is calculated only from the 
fundamental constants of nature! The result is in perfect harmony with measurements of the 
Hubble constant using the Cepheid variables in the Virgo cluster and the relative distance 
between the Virgo and the Coma cluster, which yield H0 = 87 ± 7 km s-1 Mpc-1, [20],            
H0 = 80 ± 17 km⋅s-1⋅Mpc-1, [21] or H0 = 84 ± 8 km⋅s-1⋅Mpc-1, [17]. These observations 
disagree with the other HST measurements [22], of H0 = 58 ± 4 km⋅s-1⋅Mpc-1 or with recent 
value H0 = 62.3 ± 1.3 km⋅s-1⋅Mpc-1, [18], [23]. 
    To lower the value taking out from Equ.(27) we can use the method mentioned for example 
in [10], [11] , [16] or in [24]. We accepted the practice suggested by Tully [10] and illustrated 
in [11].   
    Imagine a local mass concentration M superimposed on a Hubble flow. At a distance R 
from the mass, the radially outward velocity V may be given by 
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The first term is an inward velocity corresponding to a zero value at infinity, while the second 
term is the Hubble flow with the Hubble parameter H. We can rewrite Equ.(28) as  
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where effective (or local) Hubble constant is smaller than the true Hubble constant H, closer 
to the mass concentration. As we go away from M, the local value of local Hubble parameter 
approaches the true value. 
    Tully estimates that the local anomaly may be caused by a mass of the order 1014 M  - 1015 
M  in the Virgo Cluster. If we take the mean value for a mass M = 5 ⋅1014 M  and the mean 
distance R = 20 Mpc, [25], we get 
 

GyrMpcskmHeff 96.1526.61 11 =⋅⋅= −− . (30) 
 
    This calculated effective Hubble constant is surprisingly close to the current data (H0 = 
62.3) mentioned above. Analogous result we can realize from the consideration that local 
Hubble constant is of 1.33 times larger than global one for a present matter density ΩM = 0.2, 
[16].  
Our Heff than yields 
 

GyrMpcskmHeff 4.1552.63 11 =⋅⋅= −− , (31) 
 
which is keeping value H0 = (62.3 ± 1.3) km⋅s-1⋅Mpc-1. 
    The second test for our theory of new universal constants comes from recently published 
considerations about the Hubble flow around the Cen A/M 83 galaxy complex, [13]. 
    In paper [13] HST/ACS images, color-magnitude diagrams for 24 nearby galaxies in and 
near the constellation of Centaurus and mass estimates of the complex Cen A/M 83 are 
presented. The mass has been derived for a flat cosmological model with non-zero Λ- term as  
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MT is the total mass of a group, R0 is the turn-over radius and T0 the age of the universe, [13]. 
    If we arrange Equ.(32), we can write 
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where the second term on the left side represents the average matter density of the Cen A/M 
83 complex. On the assumption that average matter density is roughly the same in the whole 
universe, we can apply the new universal constant PK to get the age of the universe. Thus, we 
have  
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For ΩM = 0.3, we have f (0.3) = 0.808 and with PK =  this yields  325101233195.1 −− ⋅⋅ mkg
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Surprisingly, we have practically the same result as that obtained in other way mentioned 
above. 
    By reason of the results in the next section, we mention the results for ΩM = 0.39, 
concretely: 
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B. Cosmological Constant and the Λ-density ρΛ 
 
    The value of the cosmological constant derived from vacuum fluctuation has been 
discussed recently by Gurzadyan and Xue [14], [15], Djorgovski and Gurzadyan[26] or by 
Padmanabhan [27]. As shown in [14], one can get for the dark energy density  
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where Nmax = a / lP is the maximum number of relevant modes of the vacuum fluctuations, lP 
is Planck length and the present characteristic size of the Universe a ≈ 1026 m. We can express 
this result as an effective matter density, [15] 
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If we replace in the foregoing relationship the value of LK instead of a, we get 
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    Compare this value now with the value PK calculated in Equ. (26). If we interpret PK as an 
present matter density of the Universe, than the rate of ρΛ / PK  = 1.57 which yields (on the 
assumption that ΩΛ + ΩM = 1 )  
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This result is in accordance with observed data as well as with theoretical limits following 
from the different theories, for example [19], where one can find the limit for ΩM as 0.1 < ΩM 
< 0.4 and ΩΛ < 0.7 as an upper limit in a flat universe. 
    Remember again that the values for ΩΛ = 0.61 and ΩM = 0.39 were obtained by the 
calculation purely from the fundamental constants of nature. 
 
    Finally, we note that in the case of the definition M, L, T with mP, lP and tP instead of mK, lK 
and tK the values of H0 as well as ρΛ /ρm are out of the range of the present observable one. 
 
 
5. Conclusion 
 
    We defined two new sets of the fundamental constants,  {mK, lK, tK, ρK}, {MK, LK, TK, PK}, 
where the first follows from generalized Planck scales which allow to construct with help a 
quantum coefficient in the interval < –33 ; 33 > for instance arbitrary mass in the range from 
the elementary particles to the whole Universe. The second provides comparable values with 
the present characteristics of the Universe and leads to the ratio between matter density 
parameter ΩM and Λ-density parameter ΩΛ with a very good result ΩΛ = 0.61 and ΩM = 0.39 
obtained entirely by virtue of the calculation from the fundamental constants  {h, c, G,α, exp 
[α-1]}.  
    We retrieved by many different manners (based only on fundamental constants) for the 
Hubble constant value H0 = (61.43 ± 1.68) km⋅s-1⋅Mpc-1 and the age of the universe is then 
determined as T0 = 1/H0 = (15.93 ± 0.43) Gyr.  
    To summarize all values taking out only from the computations using the set of the 
fundamental constants {h, c, G, α}, all from these are in excellent correspondence with the 
observable data as well as with other theoretical predictions. 
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