18a) **LOGARITMICKÉ ROVNICE**

Uvodní poznámka: Logaritmované rovnice jsou nabourá novičí se neupřesněný funkce logaritmovací a exponenciální. Někoľko charakteristik je relativně pravdivé: rovnice

1. \(\log a = 4 \) je rovnice exponenciální a potenciálně logaritmovaná.

2. \(\cos x = \frac{1}{3} \) je rovnice exponenciální a zároveň goniometrická.

Podívejte se početně na zjevné některé rovnice logaritmované. Některé rovnice logaritmované.

<table>
<thead>
<tr>
<th>#</th>
<th>(\log a (n,s) = \log a r + \log a s)</th>
<th>(\log \log (5,2) = \log 5^2 + \log 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\log a \frac{r}{s} = \log a - \log a s)</td>
<td>(\log \log \frac{4}{5} = \log 4 - \log 5)</td>
</tr>
<tr>
<td>2</td>
<td>(\log a r^s = s \log a r)</td>
<td>(\log \log 2^3 = 3 \log 2)</td>
</tr>
<tr>
<td>3</td>
<td>(\log a x = x)</td>
<td>(\log 3^8 = 8)</td>
</tr>
</tbody>
</table>

5. \(\log 100 = x \) je rovnice 2. čidlo tečnu.

PŘÍKLADY UVEDENÝCH ROVNIC A JEICH ŘEŠENÍ

<table>
<thead>
<tr>
<th>(\log 2^4 = x)</th>
<th>(y = \log 2^8)</th>
<th>(\log 16 = x)</th>
<th>(\log 100 = x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^x = 4)</td>
<td>(\log 2^8 = y)</td>
<td>(2^x = 16)</td>
<td>(10^x = 100)</td>
</tr>
<tr>
<td>(2^x = 2^2)</td>
<td>(2^y = 8)</td>
<td>(2^x = 2^y)</td>
<td>(10^y = 10^2)</td>
</tr>
<tr>
<td>(x = 2)</td>
<td>(2^y = 2^3)</td>
<td>(y = 3)</td>
<td>(y = 2)</td>
</tr>
</tbody>
</table>
\[
\begin{array}{|c|c|}
\hline
\log x^3 - \log x^4 + \log x^5 = 8 & \log (4x+6) - \log (2x-1) = 1 \\
\hline
\text{Rozřešení: Jeden a dobrodruhů logaritmy.} & \\
3 \log x - 4 \log x + 5 \log x = 8 & \log \frac{4x+6}{2x-1} = \log 10 \quad \text{(přeště log} 10 = 1) \\
4 \log x = 8 & \frac{4x+6}{2x-1} = 10 \\
\log x = 2 & 1 \cdot (2x-1) \\
\log_{10} x = 2 & 4x+6 = 10(2x-1) \\
x = 10^2 & L = \log (4x+6) - \\
& - \log (2x-1) = \log 10 - \\
& - \log 1 = 1 - 0 = 1 \\
& P = 1 \cdot L = 10 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\log (x+3) - \log 5 = \log (x-3) - \log 2 & \\
\hline
\text{Rozřešení:} & \\
\log \frac{x+3}{5} = \log \frac{x-3}{2} & \\
\frac{x+3}{5} = \frac{x-3}{2} & 1 \cdot 10 \\
x+3 = 5x-15 & 2x+10 = 5x-15 \\
3x = 25 & 3x = 21 \\
x = 4 & x = 7 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
\log x & \frac{1}{\log 2} = 2 \\
\hline
\text{Rozřešení:} & \\
\log x = 2 - 2 \log 2 & \text{již je správně} \\
\log x = \log 100 - \log 2^2 & \\
\log x = \log \frac{100}{2^2} & \text{již je správně} \\
\log x = \log 25 & \\
\hline
\end{array}
\]
\[
\begin{array}{|c|c|}
\hline
(x-3) = \log 10 - \log (2-3x) \\
\hline
\end{array}
\]
\[
\begin{array}{|c|c|}
\hline
\log (x-3) = \log \frac{10}{2-3x} \\
\hline
\end{array}
\]
\[
\begin{array}{|c|c|}
\hline
x-3 = \frac{10}{2-3x} \\
1.(2-3x) \\
\hline
\end{array}
\]
\[
\begin{array}{|c|c|}
\hline
(x-3)(2-3x) = 10 \\
2x - 6 - 3x^2 + 9x - 10 = 0 \\
-3x^2 + 14x - 16 = 0 \\
1.(-4) \\
3x^2 - 14x + 16 = 0 \\
x_{12} = \frac{14 \pm \sqrt{193 - 48}}{6} = \frac{14 \pm \sqrt{145}}{6} \\
\hline
\end{array}
\]
\[
\begin{array}{|c|c|}
\hline
\log_2 \sqrt{x+2} + \log_2 \sqrt{x-1} = 1 \\
\hline
\end{array}
\]
\[
\begin{array}{|c|c|}
\hline
\log_2 \sqrt{x+2} \cdot \sqrt{x-1} = \log_2 2 \\
\sqrt{x^2 + x - 2} = 2 \\
\hline
\end{array}
\]
\[
\begin{array}{|c|c|}
\hline
x^2 + x - 2 = 4 \\
x^2 + x - 6 = 0 \\
x_{12} = \frac{-1 \pm \sqrt{25}}{2} = \left\{ \begin{array}{l}
x_1 = 2 \\
x_2 = 3 \text{ nevyhov.} \\
\end{array} \right. \\
\hline
\end{array}
\]
Některé rovnice nelze různě rozlučit, nek přípud logaritmování, nic nelze číti do příkladu.
<table>
<thead>
<tr>
<th>Řešení exponenciálního rovnice logaritmováním</th>
<th>(2^t + 3 - 2^t = 112) a řešení:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5^t - 2^t = \frac{10}{3}] []</td>
<td>[2^{t+3} - 2^t = 112]</td>
</tr>
<tr>
<td>Řešení: [5^t = \frac{10}{3}]</td>
<td>[8.2^t - 2^t = 112]</td>
</tr>
<tr>
<td>[5^t = \frac{250}{3}]</td>
<td>[4.2^t = 112]</td>
</tr>
<tr>
<td>[\log 5^t = \log \frac{250}{3}]</td>
<td>[2^t = 16]</td>
</tr>
<tr>
<td>[t = 2.748]</td>
<td>[\log 2^t = \log 16]</td>
</tr>
<tr>
<td>Okružno: ne kalkulujeme (5^{(2.748-2)} \approx 3.33)</td>
<td>[t \cdot \log 2 = \log 16]</td>
</tr>
<tr>
<td>[\frac{10}{3} \approx 3.33]</td>
<td>[t = \frac{\log 16}{\log 2}]</td>
</tr>
<tr>
<td>[3^t + 3^{t+1} = 128]</td>
<td>[t = 4]</td>
</tr>
<tr>
<td>Řešení: [3^t + 3 \cdot 3 = 128]</td>
<td>Uvedený původní měřík nespatně napsal logaritmování:</td>
</tr>
<tr>
<td>[4 \cdot 3^t = 128]</td>
<td>[2^t = 2^4 \Rightarrow t = 4]</td>
</tr>
<tr>
<td>[3^t = 32]</td>
<td>[\log v + \log ^2 v = 2]</td>
</tr>
<tr>
<td>[\log 3^t = \log 32]</td>
<td>[\text{substituce} \log v = t]</td>
</tr>
<tr>
<td>[t \cdot \log 3 = \log 32]</td>
<td>[t + t^2 = 2]</td>
</tr>
<tr>
<td>[t = \frac{\log 32}{\log 3} \Rightarrow t = 3.1546 \ldots]</td>
<td>[t^2 + t - 2 = 0]</td>
</tr>
<tr>
<td>[v = 0.01]</td>
<td>[t_{1,2} = \frac{-1 \pm \sqrt{13}}{2} \approx \frac{-1 \pm 3}{2}]</td>
</tr>
<tr>
<td>[v = 10]</td>
<td>[t_1 = 0]</td>
</tr>
</tbody>
</table>

Další použité (neusekřešované) logaritmování: \(1 + \log v = 2\)
\[\sqrt[5]{v \log_3 v} = 243 \]

\[\text{Rozhodno} \]

\[\log_3 v = 243 \]

\[\sqrt[5]{\frac{4}{4} \log_3 v} = 243 \]

\[\text{Logaritmové} \]

\[\log_3 v = 243 \]

\[\log_3 \left(\frac{4}{4} \log_3 v \right) = \log_3 243 \]

Pouze vrchní část \(5 \) na str. 2

\[\log_3 243 = \log_3 243 = 5 \]

\[\frac{4}{5} \left(\log_3 v \right)^2 = 5 \cdot 5 \]

\[(\log_3 v)^2 = 25 \]

\[\sqrt{\left(\log_3 v \right)^2} = \sqrt{25} \]

\[\log_3 v = \pm 5 \]

\[\text{log}_3 v = \pm 5 \]

\[v = 3^5 \quad v = 3^{-5} \]

\[v = 243 \quad v = \frac{1}{243} \]

\[\log_3 u = \log_3 4 + \log_3 6 - \frac{3}{4} \log_3 0.5 \]

\[\text{Rozhodno} \]

\[\log_3 x = \log_3 6 - \log_3 4 - \log_3 0.5 \]

\[\log_3 x = \log_3 \left(\frac{6}{4} \right) - \log_3 \left(\frac{1}{2} \right) \]

\[\log_3 x = \log_3 \left(\frac{3}{2} \right) - \log_3 \left(\frac{\sqrt{2}}{2} \right) \]

\[x = \frac{\frac{3}{2}}{\frac{\sqrt{2}}{2}} = \frac{3 \sqrt{2}}{2} \]

\[x = \frac{3 \sqrt{2}}{2} \]

\[\frac{4}{3^{u+2}} = 2 \times 3^u \]

\[\text{Rozhodno} \]

\[3^{u+2} - 2 = 3^u \]

\[3^u \cdot 3^2 - 2 = 3^u \]

\[3^u - 2 = 3^u \]

\[3^u - 1.3^u = 2 \]

\[8.3^u = 2 \]

\[3^u = 0.25 \]

\[\log 3^u = \log 0.25 \]

\[u \cdot \log 3 = \log 0.25 \]

\[u = \frac{\log 0.25}{\log 3} \]

\[u = -4.261853507 \]
Δοθεί μια δύο-τριγωνόμετρο:

a) \(\log x + \log y = 5 \)
\[\frac{\log x - \log y = 3}{\text{Σύστημα:}} \]
\[2 \log x = 8 \quad 1:2 \]
\[\log x = 4 \]
\[\log_{10} x = 4 \]
\[x = 10^4 \]

Σύνταξη:
\[L_1 = \log_{10} x + \log_{10} y = 4 + y = 5 \]
\[P_1 = 5 \]
\[L_2 = \log_{10} x - \log_{10} y = 4 - y = 3 \]
\[P_2 = 3 \quad L_2 = P_2 \quad \text{Σύνταξη: } x = 10^y \quad y = 10 \]

\(\text{β) } \log x + \log y = 5 \)
\[\frac{\log x - \log y = 3}{\text{Σύστημα:}} \]
\[2 \log x = 8 \quad 1:2 \]
\[\log x = 1 \]
\[\log_{10} x = 1 \]

\[y = 10^1 \]

\[y = 10 \]